

This guide is not intended to be an explanation of coverage and does not guarantee coverage in the event of a loss. If you have specific coverage questions or concerns, please contact your agent of record or email <u>underwriting@sdao.com</u>.

Over the past several years, some PACE members have experienced the partial or complete collapse of a building. Most of these incidents involved older, large-span engineered trusses. PACE's reinsurance carriers have taken note of these claims and have required changes to how and what we will cover regarding large-span trusses and beams. Our research suggests that the useful lifespan of these trusses is approximately 50 to 70 years.

The intent of this guide is to provide a brief overview of these changes and share best practices to help reduce the risk of collapse or truss failure.

Named Perils

The collapse or failure of an engineered truss in an insured property is only covered if caused by a named peril in your policy, such as fire, wind, or the weight of rain, snow, or ice. A complete list of named perils can be found in your coverage document or by contacting your agent of record.

Reporting Timeframe

Starting July 1, 2025, losses must be discovered and reported to PACE within 180 days following the named peril.

Engineered Wood Trusses

Although all engineered wood trusses are included in this coverage change, of most concern are large-span trusses, such as wooden bowstring and glue-laminated trusses, which are often found in gymnasiums, cafeterias, and auditoriums. These trusses were commonly used in school construction until the mid-1970s.

Exclusion

Engineered wood trusses that are more than 50 years old will be excluded from coverage. However, coverage will be added back if:

- The cause of loss is due to a named peril, and
- There is no evidence of preexisting structural damage, or
- The trusses have been repaired or deemed structurally sound by a licensed structural engineer within an inspection interval recommended by the engineer.

Best Practices

- Identify and document all large-span engineered wood trusses in your facilities.
- Conduct a documented visual inspection of the trusses.
 - o If any damage is found (e.g., checking, cracking, sagging), consult a structural engineer for evaluation.
- Hire a structural engineer to assess the condition of these trusses.
 - Some original engineered weight ratings may have been inaccurate, and aging trusses may have deteriorated, reducing their capacity.
 - Have a structural engineer evaluate load capacities before adding or replacing anything on the roof.
- Keep all documentation on file, including engineering assessments and repair records.
- Develop a long-term inspection and replacement plan (as appropriate) for these trusses.

Storm Events

- o Establish procedures to inspect trusses after significant weather events.
- o Identify accurate weight ratings and have procedures in place to remove ice and snow loads approaching safe limits.
 - Note: The goal is to reduce weight. Attempting to remove all snow may damage the roof.